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Abstract 7 

The gut microbiome is emerging as a key modulator of host energy balance1. We conducted a quantitative 8 

bioenergetics study aimed at understanding microbial and host factors contributing to energy balance. We used 9 

a Microbiome Enhancer Diet (MBD) to reprogram the gut microbiome by delivering more dietary substrates to 10 

the colon and randomized healthy participants into a within-subject crossover study with a Western Diet (WD) 11 

as a comparator.  In a metabolic ward where the environment was strictly controlled, we measured energy 12 

intake, energy expenditure, and energy output (fecal, urinary, and methane)2. The primary endpoint was the 13 

within-participant difference in host metabolizable energy between experimental conditions. The MBD led to an 14 

additional 116 ± 56 kcals lost in feces daily and thus, lower metabolizable energy for the host by channeling 15 

more energy to the colon and microbes. The MBD drove significant shifts in microbial biomass, community 16 

structure, and fermentation, with parallel alterations to the host enteroendocrine system and without altering 17 

appetite or energy expenditure. Host metabolizable energy on the MBD had quantitatively significant 18 

interindividual variability, which was associated with differences in the composition of the gut microbiota 19 

experimentally and colonic transit time and short-chain fatty acid absorption in silico. Our results provide key 20 

insights into how a diet designed to optimize the gut microbiome lowers host metabolizable energy in healthy 21 

humans.  22 

  23 



 

 

Main 24 

In recent years, it has become irrefutable that the microbial communities in the colon have a profound effect on 25 

host physiology, including immune function, inter-organ communication, and metabolism3. The majority of 26 

studies in humans have correlated the gut microbiota’s composition, gene expression, and metabolism with 27 

human-health endpoints such as body weight, glycemic control, and inflammatory bowel diseases4,5. What 28 

remains to be determined is whether the gut microbiome is a causal driver of host physiology or merely an 29 

association6.  30 

 31 

The effect of the gut microbiome on weight regulation has been a topic of high interest1. Obesity is a major 32 

public health problem that is at the nexus of metabolic diseases such as cardiovascular disease, non-alcoholic 33 

fatty liver disease, and type 2 diabetes7.  The gut microbiome has emerged as a control center for host energy 34 

balance through its impacts on energy harvest from food, gut hormones, and signaling through metabolites such 35 

as short chain fatty acids (SCFAs)1. Existing data are largely restricted to preclinical models or observational 36 

studies8-10. Prior controlled feeding studies have demonstrated that high-fiber diets are associated with reduced 37 

host metabolizable energy11 and that variable energy load can alter energy harvest efficiency in a way that 38 

correlates to phyla in the gut microbiota12. Despite these advances, a fundamental gap in knowledge is whether 39 

or not the gut microbial ecosystem is on the causal pathway leading to weight regulation in humans. Studies to 40 

date also lack a comprehensive quantitative evaluation of the contribution of the gut microbiome to the entire 41 

energy balance equation, including energy intake, energy expenditure, and fecal energy losses. Prior studies 42 

were also not sufficiently precise to detect potentially modest differences that can vary dramatically between 43 

individuals, particularly when appropriate environmental controls were not implemented. 44 

 45 

To address these critical knowledge gaps, we quantified the intersection of host and gut microbiome factors on 46 

human energy balance by performing a controlled feeding study in a metabolic ward using a deep-phenotyping 47 

paradigm of quantitative bioenergetics (NCT02939703)2 (Extended Data Fig. 1a-b). The intervention included a 48 



 

 

highly digestible control Western Diet (WD) and a Microbiome Enhancer Diet (MBD).  The MBD was 49 

designed to maximize the availability of dietary substrates to the gut microbiome and included these four 50 

drivers: dietary fiber, resistant starch, large food particle size, and limited quantities of processed foods 51 

(Extended Figure 1a). Our design provided equivalent metabolizable energy and total macronutrients (fat, 52 

protein, carbohydrates) based on classic principles and equations of food digestibility13. Diets were prepared in 53 

our metabolic kitchen and validated by measuring energy content via chemical analysis. The details of 54 

participant flow from enrollment through analysis are detailed in Extended Data Fig. 1c. 55 

 56 

To avoid the confounding effects of energy imbalance on host and microbial metabolism, the diet intervention 57 

maintained each participant in energy balance.  Energy balance, evaluated by real-time energy intake and 58 

energy expenditure (measured via whole-room indirect calorimetry), was maintained within our target of +/- 50 59 

kcals per 6-day calorimeter stay (WD 4.1 ± 5.1 kcal/day; MBD 5.4 ± 2.8 kcal/day; p = 0.8) (Extended Data Fig. 60 

2a). Weight stability was a secondary criterion for evaluating energy balance, and we previously reported that 61 

weight was stable during the 6-day calorimetry assessment period whilst the primary endpoint was measured; 62 

the study team members were blinded to the diet assignment2.  63 

 64 

Surveillance of adverse events revealed minimal gastrointestinal or other side effects (Extended Data Table 1). 65 

Adherence was equivalent between diets during the inpatient period (99.6±0.19% on MBD vs. 99.9±0.10% on 66 

WD, p = 0.27; Extended Data Fig. 2b).  Next, we evaluated whether the consumed diets provided equivalent 67 

metabolizable energy, macronutrients, and the intended amounts of fiber and resistant starch. Analysis of intake 68 

during the nine inpatient days that provided meals exactly as designed (i.e., excluding the ad libitum feeding 69 

day and the gastric emptying test day which required a liquid meal) demonstrated that the diets consumed 70 

delivered the planned energy, macronutrients, and gut microbiome drivers (Extended Data Table 2).  71 

 72 



 

 

Young, healthy, weight-stable individuals were enrolled to quantify whole body bioenergetics without the 73 

confounding effects of age and metabolic disease14, and to establish the comparative data needed for future 74 

studies enrolling people with various health conditions. The study sample was 30.8 ± 1.9 years of age, with a 75 

BMI within the normal weight to overweight range. All participants reported normal stool patterns based on the 76 

Bristol Stool Scale. We excluded people with recent antibiotic use or chronic health conditions by medical 77 

history and standard clinical labs (Extended Data Table 3).   78 

 79 

Diet modulated host metabolizable energy 80 

The overall goal of our study was to reprogram the gut microbiome and employ a quantitative paradigm with 81 

enough precision to detect within-participant responses to the diet intervention. To this end, as a more precise 82 

alternative to the use of ingested dyes, and according to the method of Pak15, we administered a low, non-83 

laxative dose of non-absorbable non-digestible polyethylene glycol (PEG) with each meal. We measured the 84 

PEG concentration in fecal samples to normalize each fecal measurement to 24-hours based on expected daily 85 

PEG excretion.  To quantify fecal energy loss, we used chemical oxygen demand (COD), a measure of electron 86 

equivalents in organic carbon16 and adjusted the result to PEG recovery. COD is typically used for microbial 87 

bioenergetics in environmental biotechnology16. We previously reported that, for food items, COD correlates 88 

highly to the commonly used bomb calorimetry method (R²=0.97)17. COD is a less expensive alternative that 89 

provides relevant information for microbial electron balances, and more physiologically relevant measurements, 90 

since COD does not include the oxidation of ammonia, which humans do not utilize as an electron donor16,17. 91 

Additionally, COD is advantageous because it simultaneously measures electrons available to humans and 92 

microbes, thus enabling  electron balances to quantify energy flow16. Based on this (fecal energy as COD 93 

adjusted to PEG recovery), the MBD increased mean daily fecal energy losses, compared to the WD, over the 94 

six calorimetry days of the inpatient, controlled feeding period (73.0 ± 6.1 gCOD/day on MBD vs. 32.1 ± 2.5 95 

gCOD/day on WD; P < 0.0001; Fig. 1a). When fecal energy loss was adjusted to total energy intake, host 96 

metabolizable energy was lower with the MBD (89.5 ± 0.73% on the MBD vs. 95.4 ± 0.21% on the WD (Fig. 97 



 

 

1b; P < 0.0001), which equates to an additional 116 ± 56 kcals daily channeled to feces (Fig. 1c; P < 0.0001). 98 

These data align with the preclinical literature showing that the quantitative impact of the gut microbiome on 99 

host energy balance is primarily via its critical roles on energy harvest from the diet8,9.  100 

 101 

Diet reprogramed the gut microbiome  102 

Given our primary finding that diet produced a clinically significant change in host metabolizable energy, we 103 

next evaluated the microbial phenotype associated with host energy balance. Mean daily fecal weight was 104 

higher on the MBD (P < 0.0001; Extended Data Fig. 3a), and a proportion of this additional weight was due to a 105 

significant increase in 16S rRNA genes (P < 0.0001; Fig. 2a), an indication of fecal bacterial biomass increase 106 

since the MBD produced 19.6 ± 3.5 gCOD/d of microbial biomass compared to 9.4 ± 1.2 gCOD/d on the WD. 107 

 108 

Using whole-genome sequencing, we evaluated whether the increase in bacterial biomass was accompanied by 109 

a change in microbial diversity.  Alpha-diversity assessed by bacterial richness and evenness did not differ 110 

(Extended Data Fig. 3b-c). In contrast, beta-diversity showed significant and stark separation by diet whether 111 

evaluated by Bray-Curtis (Dis)similarity (P = 0.02; Fig. 2b) or Jaccard Similarity (P = 0.02; Extended Data Fig. 112 

3d). This diet-induced change in composition was paralleled by an increase in fermentation, evidenced by 113 

higher SCFAs on the MBD vs. WD in feces (total, acetate, propionate, and butyrate; P = 0.001, 0.002, 0.007, 114 

and 0.0005, respectively; Fig. 2c) and serum (total, acetate, and butyrate; P = 0.004, 0.004, and 0.008, 115 

respectively; Fig 2d).  116 

 117 

To further explore the compositional changes in the microbiome associated with diet-induced changes in host 118 

metabolizable energy, we used metagenomic sequences to evaluate microbial taxonomic differences and 119 

derived regression coefficients describing each microbe’s association with diet using Maaslin2’s compound 120 

Poisson regression model18. Although relative abundance did not differ between the diets at the phylum and 121 

family levels (Extended Data Table 4), we found 53 differentially abundant taxa at the species level (P < 0.05; 122 



 

 

Extended Data Fig. 3e-f), of which 10 had a Q < 0.05 and differential effect size ≥ 2 (Fig. 2e). In accordance 123 

with dietary substrate availability, six species that had higher relative abundance on the MBD and included 124 

dietary fiber degraders (Prevotella copri, uncharacterized Prevotella, and Lachnospira pectinoschiza19; Q = 125 

1.46 X 10-06, 0.0005, and 0.001, respectively) and/or butyrate producers (Lachnospira pectinoschiza20, 126 

Eubacterium eligans21, and likely the uncharacterized Oscillibacter (CAG_241 and 57_20)22; Q = 0.001, 7.44E 127 

x 10-07, 0.01  and  2.27 x 10-07, respectively). In contrast, the 4 species with a higher relative abundance on the 128 

WD included Blautia hydrogenotrophica, Bifidobacterium pseudocatenulatum, uncharacterized Blautia 129 

CAG:257, and uncharacterized Actinomyces ICM7 (Q = 0.001, 5.6 X 10-05, 0.006, 0.02, respectively). These 130 

four species derive their source of fermentation from host-glycans, simple sugars23,24, or fermentation products 131 

generated by other gut microbes, mainly CO2
25 and H2

26. Thus, the microbiota signature that defined the 132 

response to the MBD i) channeled more energy to the microbes (instead of the host), ii) increased microbial 133 

fermentation, iii) increased fecal SFCAs, and iv) increased biomass. In contrast, the WD led to conditions in 134 

which the gut microbes were “starved” because a high proportion of metabolizable energy had been digested 135 

and absorbed by the host in the upper gastrointestinal tract.  136 

 137 

Host responded to microbiome reprogramming 138 

We explored whether the differential host energy harvest from the diet changed weight/body composition, gut 139 

motility, appetite, and/or hormonal secretion from the gut and pancreas. Although we previously showed that 140 

weight was stable within individuals during each inpatient calorimetry period, when either diet was consumed 141 

in random order2, we uncovered a small, clinically insignificant body weight reduction on both diets during the 142 

inpatient period, and the loss was greater on the MBD than on the WD (-134.4 ± 156.1 g WD; -625.6 ± 196.5 g 143 

MBD; P = 0.04; Fig. 3a). This change in weight was accompanied by a trend towards greater loss of fat mass on 144 

the MBD than on the WD (-64.7 ± 84.6 g WD; -289.9 ± 97.30 g MBD; P = 0.055) without a change in lean 145 

mass (-365.9 ± 251.2 g MBD; -99.14 ± 201.7 g WD; P = 0.45; Fig 3b-c). This suggests that the additional fecal-146 

energy loss on the MBD was sufficient to promote a modest change in body composition despite equivalent 147 



 

 

metabolizable energy intake based strictly on existing food digestibility paradigms.  These paradigms do not 148 

account specifically for the microbial biomass or microbial energy harvest13. 149 

 150 

One of the gaps in prior human studies was the lack of a precise quantitation of the entire energy balance 151 

equation. In addition to our evaluation of energy intake (Extended Data Table 2) and fecal energy loss to derive 152 

host metabolizable energy (Fig. 1 a-c), we measured energy expenditure with whole room indirect calorimetry 153 

over 6 days and found no diet difference in sleep metabolic rate (in kcal/day) by diet (P = 0.15; Fig. 3d), despite 154 

being able to detect a posteriori a 26.5 kcal/day difference2. This suggests that, under conditions of fixed energy 155 

intake, the main quantitative contribution of the gut microbiome to host energy balance was through its effect 156 

on energy harvested from the diet, particularly when sufficient substrates were available for fermentation, as 157 

with the MBD.  158 

 159 

The relationships among diet composition, gut microbes, and colonic transit time (CTT) are complex, multi-160 

directional, and vary within individuals over time and between individuals27. Given the potential importance of 161 

CTT on the microbiota-driven host response to dietary manipulations, we evaluated whole-gut transit using a 162 

pH-sensing radiotransmitter device. We did not find a statistically significant difference in CTT by diet (39.2 ± 163 

6.2 hours on WD vs. 29.7 ± 4.4 hours on MBD; P = 0.14; Fig. 3e). Gastric emptying evaluated by 164 

acetaminophen appearance in the blood after a fixed liquid meal also was not different by diet (Extended Data 165 

Fig. 4a). The pH of the colon can be an indicator of microbial fermentation activity. Neither median pH (which 166 

reflects both fermentation and the impact of food mixing in the colon) nor the median pH within a 1-hour 167 

window of the ileocecal passage (which is impacted primarily by microbial fermentation products)28 differed by 168 

diet (P = 0.11 and 0.23, respectively; Fig. 3f; Extended Data Fig 4b). The lack of statistically significant effects 169 

likely was due to the substantial amount of interindividual variability in CTT, gastric emptying and colonic pH, 170 

confirming the complex and individualized relationships among these parameters, which  may be critical to 171 

understanding the host-microbiota axis within individuals27. 172 



 

 

 173 

We hypothesized that the MBD might decrease appetite relative to the WD via the inclusion of high-fiber foods 174 

and production of metabolites through gut microbial fermentation29. This hypothesis was rejected (Extended 175 

Data Fig. 4c-h). Thus, the observed negative energy balance and small changes in body composition on the 176 

MBD did not trigger a compensatory change in appetitive behaviors or food intake compared to the WD.  177 

 178 

The mammalian gut senses nutrients and microbial fermentation products and is part of the larger 179 

enteroendocrine system that plays a key role in maintenance of energy homeostasis30. Cumulative negative 180 

energy balances can result in body weight reductions. However, the regulation of body energy stores involves 181 

neural circuits in the hindbrain and hypothalamus, proximal and distal gut hormone secretions and adipose 182 

tissue neural and endocrine signals to the brain31.  We explored several potential mechanisms by which the gut 183 

microbiome might regulate body weight beyond the observed negative energy balance. On the second-to-last 184 

day of each inpatient period, we measured fasting and postprandial levels of several hormones known to 185 

regulate appetite at 18 timepoints over 12-hours. Consistent with the slight, but measurable decrease in body fat 186 

stores on the MBD, secretion of the adipose tissue hormone leptin had a significantly lower incremental area 187 

under the curve (iAUC) on the MBD (P = <0.0001; Fig. 3g).  A reduction in circulating leptin is known to 188 

increase food intake32.  GLP-1 is a gut incretin hormone secreted by L-cells in the proximal gut in response to 189 

meals.  GLP-1 is also secreted from the distal colon in response to gut microbiome metabolites including 190 

SCFA29. The increase in fecal and serum SCFA on the MBD was accompanied by a trend of increased GLP-1 191 

iAUC (P = 0.08; Fig 3h), with a significantly higher AUC at breakfast and lunch and a trend towards a higher 192 

AUC at dinner (P = 0.02, 0.04 and 0.08, respectively) on the MBD compared with the WD.  Pancreatic 193 

Polypeptide (PP) iAUC was significantly increased on the MBD (Fig 3i). GLP-1 and PP decrease food 194 

intake33. Therefore, the short-term negative energy balance within our experimental paradigm did not trigger the 195 

compensatory food-intake responses expected from the change in body fat and leptin. Further experiments 196 

should pursue this hypothesis. 197 



 

 

 198 

Microbes contributed to energy balance 199 

Given the robust response to our diet intervention by the gut microbiome and host, we sought to determine the 200 

quantitative role of the gut microbiome on energy harvest from the diet versus the impact driven solely by food 201 

digestibility11. We tested the hypothesis that methane production by methanogenic archaea contributes to a net 202 

negative energy balance. We developed and validated a first-in-human method to quantify 24-hour methane 203 

production in a whole room calorimeter at part-per-billion resolution34. The range of methane measured within 204 

our study was 0.28-1613 ml/day, translating to 0.002-14 kcals lost per day. While this negative energy balance 205 

is not clinically meaningful for weight management by itself, it may have a quantitative impact when 206 

considered in concert with other microbial impacts on host energy balance. For example, methanogenesis might 207 

accelerate fermentation based on removing a thermodynamic limitation or by competing with other hydrogen-208 

consuming process, like acetogenesis and sulfate reduction35. 209 

 210 

Host metabolizable energy on the WD showed little interindividual variability (94.1-97.0%; Fig. 1b) since most 211 

nutrients were absorbed in the small intestine and were inaccessible to the gut microbiome. However, the range 212 

of host metabolizable energy in response to the MBD was much broader (84.2-96.1%; Fig. 1b). The range 213 

translates to 69-408 non-metabolized kcals/day (vs. 56-185 kcals/day on the WD), a clinically meaningful 214 

quantitative difference that could tip the scale towards a greater negative energy balance based on dietary 215 

energy harvest efficiency.  216 

 217 

This led us to hypothesize that the variability in host energy balance could be associated with the repertoire of 218 

gut microbes in the colon. To test this hypothesis, we asked whether the quantitatively important variability in 219 

host metabolizable energy on the MBD could be related to a unique microbial signature. To identify those 220 

microbial signatures, we derived regression coefficients describing each microbe’s association with the 221 

independent variable of host metabolizable energy using Maaslin2’s compound Poisson regression model18. In 222 



 

 

total, host metabolizable energy was associated with 16 species (Extended Data Fig. 5a-b). The significant 223 

microbes with the largest effect size (Q < 0.05; effect size ≥ 2) were Clostridium bolteae, Streptococcus 224 

parasanguinis, Streptococcus australis, and Erysipelatoclostridium ramosum. All were inversely associated 225 

with host metabolizable energy, indicating that reduced energy availability to the host may increase substrate 226 

availability for the growth of these specific microbes (Fig. 4a).  227 

 228 

We next embarked on a series of mathematical modeling experiments using an established model36 to estimate 229 

the gut microbial contribution to host energy balance. We previously reported an in-silico model that estimates 230 

the dual impact of host digestion and microbial fermentation on macronutrient uptake in the small and large 231 

intestine and ultimately, on host metabolizable energy36.  The model also estimates the amount of SCFAs 232 

absorbed by the host due to microbial fermentation in the colon and the associated biomass. We applied this 233 

model to predict the host metabolizable energy we measured in our study by inputting actual energy intake 234 

components and fecal energy in grams COD/day.  Our previously published model used a fixed CTT of 48 235 

hours, which is a reasonable population-level estimate for healthy adults37.  With a fixed CTT, the modeled host 236 

metabolizable energy for participants on the WD was 95.2 ± 0.001% and for MBD was 92.4 ± 0.001% (Fig. 237 

4b). This is similar to the mean host metabolizable energy we measured on the WD and the MBD (95.4 ± 238 

0.21% and 89.5 ± 0.73%, respectively; Fig. 1b). However, the variability we saw experimentally on the MBD 239 

was not reproduced by the mathematical model. We hypothesized that we could improve the model’s predictive 240 

ability by adding measured CTT since it is a key modulator of microbial composition, fermentation, and host 241 

energy balance27.  When we included measured CTT, the modeled range of metabolizable energy on the MBD 242 

was 84.6-92.9%, which was very similar to the measured range of 84.2-96.1%; furthermore, systematic and 243 

proportional bias was minimized (Extended Data Fig. 5c-d). Thus, using the CTT explained some of the 244 

variability in host metabolizable energy.  245 

 246 



 

 

A significant proportion of the reduced metabolizable energy on high-fiber diets is due to colonic microbial 247 

fermentation of fiber and resistant starch into absorbable SCFA38. Our model predicted that more total energy 248 

(g COD) as SCFAs was absorbed by the host on the MBD, compared to the WD (72.3 ± 13 gCOD/d on the 249 

MBD vs. 36.4 ± 4.3 gCOD/d of microbially-derived SCFAs; P < 0.00001; Fig. 4d). When we adjusted the 250 

SCFA absorption for energy intake, we found a nearly 2-fold greater absorption of energy as SCFAs on the 251 

MBD as compared to the WD (P < 0.00001; Fig. 4e). Therefore, despite less total energy being absorbed by the 252 

host on the MBD, a larger proportion was derived from SCFAs. Consistent with our experimental data, our 253 

model strongly supports a significant microbial contribution to host metabolizable energy and, therefore, the 254 

overall energy balance. 255 

 256 

Discussion 257 

Microbial communities in the gut have a profound impact on mammalian host endocrinology, physiology, and 258 

energy balance, with most causal inferences historically restricted to preclinical animal models1,8,9. Prior human 259 

studies exploring the relationships among the gut microbiome, obesity, and energy balance lacked the deep 260 

phenotyping, precise methodologies, and rigorous controls that are instrumental for drawing causal inferences 261 

with respect to human health. Our central finding was that a diet designed to feed and reprogram the colonic gut 262 

microbiome, under conditions of fixed energy intake and physical activity, led to reduced metabolizable energy 263 

by the host and increased fecal and energy output consisting of undigested food, bacterial biomass, and 264 

microbial metabolites. Thus, the greater fecal energy loss on the MBD was not just due to undigested food, but 265 

also to an in increase in fermenting gut microbes and their metabolites. The direction of change in energy 266 

absorbed from the diet by the host (lower on the MBD) was consistent in 16 out of 17 study participants. This 267 

means that most of our participants had the microbial capacity to metabolize dietary substrates. This observation 268 

is contrary to the “extinction” hypothesis proposed in mice39 and suggests that, with rigorously controlled 269 

dietary conditions that vary markedly in the amount of substrate delivered to the colon with a comparable kcal 270 



 

 

and total macronutrient profile, healthy humans harbor microbiomes which are adaptable and/or have sufficient 271 

functional redundancy to overcome certain extinctions imposed by diet. 272 

 273 

The reduction in energy harvest from the diet on the MBD relative to the WD was not accompanied by a 274 

reduction in energy expenditure or an increase in hunger or ad libitum energy intake. However, the significant 275 

diet-induced reprogramming of the gut microbiome was accompanied by a modest change in weight and body 276 

composition with robust enteroendocrine signals from the adipose-pancreas-gut axis. Given the modestly 277 

negative energy balance and reduced body energy stores on the MBD, our results support the hypothesis that an 278 

intentional remodeling of the gut microbiome through provision of adequate dietary fiber, resistant starch, and a 279 

focus on whole, minimally processed foods resets the integrated sensing mechanisms known to affect food 280 

intake and body energy stores. One or more of these mechanisms or other unknown mechanisms might be 281 

responsible for the population associations between a diverse human gut microbiome and lower body mass1. 282 

The slightly greater reduction in weight and body fat on the MBD, compared to the WD, over the inpatient 283 

period despite daily titration of energy requirements to match calorimetry-derived measures of energy 284 

expenditure, suggests that the use of a diet that adequately feeds colonic microbes and increases microbial 285 

fermentation products (i.e., short-chain fatty acids) will not lead to additional absolute energy availability to the 286 

host. In contrast, diets such as the MBD promote additional fecal energy loss and an increase in host uptake of 287 

SCFAs from the colon, despite the overall decrease in host uptake of energy. Future microbiome-focused 288 

research should delve into these systems for controlling body weight. 289 

 290 

The quantitative contributions of gut microbes to host energy balance were addressed in two forms. First, the 291 

energy in feces increased by 40.9 ± 4.6 g COD/d (116 ± 56 kcals kcal/day) for participants on the MBD, even 292 

though their total metabolizable energy intake was the same.  Second, the microbial community increased in 293 

size (biomass) and fermentation processes that were reflected by increased fecal and serum SCFAs on the MBD 294 

as compared to the WD.  Thus, the host’s energy intake shifted towards microbially produced SCFAs and away 295 



 

 

from proximally digested and absorbed carbohydrates in the food.  While the quantitative contribution of 296 

microbially generated SCFAs was overshadowed by the additional loss of microbial biomass in the feces, the 297 

uptake of more microbially produced SCFAs was associated with increased GLP-1 and pancreatic polypeptide 298 

concentrations. 299 

 300 

We also found a taxonomic signature that was in alignment with the expected impacts of the substrates 301 

available to the gut microbes on the two diets. First, many of the species detected at higher abundance on the 302 

MBD were fiber degraders and/or butyrate producers. Second, our data reveal that, when the gut microbiome 303 

was reprogrammed by providing adequate dietary substrates, changes in the relative abundance of microbes that 304 

produce SCFAs could modulate several components of the energy balance equation. Lachnospira pectinoschiza, 305 

Eubacterium eligans, and likely the uncharacterized Oscillibacter had a higher relative abundance on the MBD 306 

and are butyrate producers20-22.  Butyrate plays important roles in host energy balance by stimulating the release 307 

of satiety hormones40 and accelerating CTT41. Acetate stimulates the release of satiety hormones42 and acts as a 308 

satiety signal itself 43. 309 

 310 

Host metabolizable energy was highly variable on the MBD. Given our tight control of energy intake and 311 

energy expenditure, this suggests that the microbial contribution to this variability was greater in some hosts 312 

than others. Indeed, with a proportionally equivalent input of substrates for microbes, fecal energy losses varied 313 

over an ~6-fold range. Understanding the mechanisms by which the microbial communities in the human colon 314 

modulate energy harvest and their interaction with host factors such as CTT will provide valuable quantitative 315 

data to drive personalized strategies to optimize host-microbiota-diet interactions and prevent or treat obesity.  316 

 317 

Host metabolizable energy was associated with a unique microbial profile on the MBD, with 4 microbial 318 

species whose relative abundance increased in association with decreasing host metabolizable energy. One of 319 

those species, Streptococcus australis, transiently increases after weight loss due to bariatric surgery as 320 



 

 

compared to normal weight controls44. Hungatella hathewayi and Erysipelatoclostridium ramosum were more 321 

abundant in germ-free mice colonized with feces from a human that underwent caloric restriction with a 322 

concomitant phenotype characterized by lower adiposity45. Clostridium bolteae, in addition to being a lactic-323 

acid producing bacterium46, has recently been reported to bind phenylalanine, tyrosine, or leucine amino acids 324 

to microbially deconjugated bile acids. While the clinical effects of these microbially transformed bile acids are 325 

unclear, bile acids are known to play an important role in microbial energy extraction47. Overall, these findings 326 

make it plausible that the variability in host metabolizable energy on the MBD is related to a specific microbial 327 

signature and the metabolic processes driven by the relationships between host and microbes.   328 

 329 

We also investigated, in silico, the factors that might be contributing to hose metabolizable energy variability 330 

and found that colonic transit time was an important driver. Host metabolizable energy prediction with 331 

measured CTT more closely captures the variability seen in measured host metabolizable energy. Our 332 

mathematical model, which generated outputs consistent with the clinical data describing the metabolizable 333 

energy of participants consuming WD and MBD, allowed us to determine the important role of CTT and to 334 

quantify that a host on the MBD produced feces containing 19.6 ± 3.5 gCOD/day of microbial biomass (about 335 

10 gCOD/day more than WD) and led to 36.4 ± 4.3 gCOD/day more uptake of microbial derived SCFAs. We 336 

believe these factors, and others that may be revealed in future studies, could capitalize on the adaptability of 337 

the gut microbiome as a target for personalized medicine48.  338 

 339 

Given the size and scope of the global obesity epidemic and its continued increase, new solutions are needed.  340 

The scientific community has recently reoriented itself towards population interventions that promote small 341 

changes in energy intake and expenditure as a means of preventing weight gain49.  This study demonstrates the 342 

potential to enact this “small changes” principle through the consumption of a simple whole food intervention 343 

which reprograms the gut microbiome and might serve as a useful population level tool to fight the global 344 

obesity epidemic.  345 
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Methods 465 

The design of this trial (NCT02939703) has been previously reported1. We summarize key elements below and 466 

include details on elements not reported elsewhere.  467 

 468 

Study participants. We recruited males and females 18-45 years of age with a BMI ≤30 kg/m2 who were 469 

weight stable and otherwise healthy after obtaining informed consent1. The study was approved by the 470 

AdventHealth Institutional Review board. Adverse events were monitored at each contact with the participant 471 

and reported according to Institutional Review Board guidelines.  472 

 473 

Design overview. This was a randomized crossover study with a control Western Diet (WD) compared to a 474 

Microbiome Enhancer Diet (MBD). After an initial assessment period to establish outpatient dietary intake 475 

requirements (Days 1-9), all food was provided to participants, and they consumed the meals outpatient for 11 476 

days (Days 10-20 and 39-49) and inpatient for 12 days (Days 21-32 and 50-61). Included was a minimum 14-477 

day washout between diet periods. All endpoint assessments were conducted while participants were housed in 478 

our metabolic ward1.  479 

 480 

Clinical Assessments. Health status was determined by medical history, physical examination, standard blood 481 

chemistries, and the Bristol Stool Scale to evaluate stool type based on shape and consistency with scores of 3-482 

4, indicating neither constipation nor loose stools2. 483 

 484 

Whole-room indirect calorimetry. Energy expenditure and all its subcomponents was evaluated every 24-485 

hours with whole room calorimetry in two 6-day blocks per diet (days 24-29 and 53-581) following published 486 

standards of operation3. We also re-engineered our calorimeters to measure 24-hour methane. The full 487 

validation of this method has been previously described4. Activity was tightly controlled during the day to 488 

maintain spontaneous physical activity consistent within and between participants1.  489 

 490 



 

 

Energy balance. Energy balance was estimated by subtracting actual metabolizable energy intake (calculated 491 

by menu design software based on actual intake) from energy expenditure measured by whole room 492 

calorimetry5.  493 

 494 

Host Metabolizable Energy. To calculate host metabolizable energy, we converted energy intake in kcals to 495 

grams COD using our published relationship6. That allowed us to compute the percent of energy metabolized by 496 

the host after accounting for fecal energy loss which was measured in COD. To relate this percentage back to 497 

kcals and determine the number of daily kcals that were not absorbed by the host, we multiplied host 498 

metabolizable energy percentage by energy intake in kcals.  499 

 500 

Dietary intervention. Diets were prepared in our metabolic kitchen based on kcals needed to maintain energy 501 

balance as determined by whole-room indirect calorimetry. Diets were designed with menu software (ProNutra 502 

Version 3.5, Viocare, Inc, Princeton, NJ) that proportionately calculated diets based on energy needs. Duplicate 503 

meals were prepared during all calorimetry days and evaluated for energy content as a quality-control step 504 

(Eurofins, Madison, WI). Nutritional composition of the diets was based on the menu software database (USDA 505 

Database Standard Reference 23), with the exception of resistant starch, because it is absent from all currently 506 

available nutritional databases. We limited foods containing resistant starch on the WD and then estimated the 507 

content on both diets based on published estimates of resistant starch content of common foods7. Diets were 508 

equivalent in metabolizable energy and proportions of macronutrients. As much as possible, we used similar 509 

types of foods on both diets to minimize differences in micronutrients. Extended Data Table 2 shows the 510 

energy, macronutrient, and drivers in each diet. Consumption of 100% of provided foods was required. Diet 511 

adherence was monitored during the 11-day outpatient phase at clinic visits 2 or 3 times per week where at least 512 

one meal was consumed on site. During the inpatient phase, all meals were monitored1.   513 

 514 



 

 

Sample collection, processing and shipment. Blood, urine, and fecal samples were collected in our metabolic 515 

unit using standard protocols. Fecal samples were collected each time they were produced during the 6-day 516 

measurement periods in the whole room calorimeter. Samples weight were tracked upon collection and as 517 

aliquots were prepared. Fecal samples were processed within an hour of production under an anaerobic hood 518 

and were maintained on ice during processing. After mixing with a sterile spatula, samples were sub-aliquoted 519 

for various downstream applications. Samples for metagenomic sequencing were snap frozen without additives 520 

and stored at -80°C. They were shipped overnight on dry ice. Any fecal sample not needed for method-specific 521 

aliquots were stored (sealed) in original collection container at -20°C within 60 minutes of collection. At the 522 

end of each 6-day calorimetry period, all collection containers were opened, and all frozen samples were 523 

transferred into a single, large, homogenization container to create a composite sample (without additives) that 524 

was used to measure fecal energy, SCFAs, and biomass. The composite was partially thawed on ice while 525 

remaining sealed and then homogenize, on ice, using a sterile paddle homogenizer. The composite sample was 526 

stored at -80°C until used or shipped overnight on dry ice1. 527 

 528 

Weight and body composition. Weight (fasting and in a gown) was measured daily during the 12-day 529 

metabolic ward stay on a calibrated scale. Body composition was assessed with dual energy x-ray 530 

absorptiometry the day prior to entering the calorimeter (Days 23 and 52) and after exiting the calorimeter 531 

(Days 31 and 60) with a two-day window allowed for the pre or post measurement.  532 

 533 

Fecal energy. Fecal energy was evaluated with chemical oxygen demand (COD) as per our previous 534 

publication6. Briefly, COD was measured per manufacturer’s protocol using a reactor digestion method with 535 

high-range digestion vials followed by a colorimetric assay (HACH, Loveland, CO; Product # 2125925). To 536 

ensure that fecal energy was accurately reflective of 24-hour fecal production, we utilized the non-absorbable, 537 

non-digestible fecal marker polyethylene glycol (PEG). Participants consumed 1.5g/day of PEG of molecular 538 

weight 3350 g/mol (PEG3350). The PEG3350 was procured by a compounding pharmacy that prepared 0.5g 539 



 

 

capsules (percent error = 2.8%) (Pharmacy Specialists, Altamonte Springs, FL). The details of the PEG assay 540 

are below. Fecal energy was measured in 6-day composites of feces collected in our calorimeters. We 541 

normalized fecal energy produced to the weight of all feces produced in those 6-days and then to PEG recovery.  542 

Fecal energy loss was converted to host metabolizable energy by calculating the percentage of energy that was 543 

lost in feces (in g COD) relative to total energy intake (in g COD). The conversion from energy in COD to kcals 544 

lost in feces per day (non-metabolizable kcals) was calculated by multiplying total EI in kcals by the percent 545 

host metabolizable energy.  546 

 547 

Polyethylene glycol assay. We utilized a method that is slightly modified from the initial published method by 548 

Sadilek et al.8. Key modifications include quantitation based on the +2 charged PEG3350 polymers instead of 549 

the +4 charged polymers and the inclusion of an internal standard. Sample preparation was also slightly 550 

modified. Briefly, samples were prepared by a 1:1 dilution with Nanopure water and homogenized. Two grams 551 

of sample was diluted in 14 ml Nanopure water that included a final concentration of 1.5 uM internal standard 552 

(monodispersed PEG, MW 2160 g/mol; Quanta Biodesign, Plain City, OH; Product # 10897). An HPLC-MS 553 

method was used for the separation and detection of PEG3350 in human fecal samples8. The published assay 554 

was transferred to ARL Biopharma for subsequent PEG quantification on study samples (Oklahoma City, OK). 555 

The assay is linear as evidenced by the R2 of the calibration curve (0.9987). The linear range of the assay was 556 

from 0.1 uM to 20 uM with PEG3350 recovery ranging from 96.2-104.5%. The relative standard deviation of 557 

the assay was 1.8%. There was no co-elution of analyte with expected excipients or related compounds in 558 

chromatograms demonstrating the assay is specific for PEG3350.  559 

 560 

Quantification of bacterial 16S rRNA genes. Quantitative PCR (qPCR) was performed with triplicate PCR 561 

reactions as described by9 in a Thermofisher Applied Biosystems Quant Studio 3. Universal primers 926F (5’ – 562 

AAACTCAAAKGAATTGACGG - 3’) and 1062R (5’ - CTCACRRCACGAGCTGAC - 3’) were used. 563 

Calibration curves using 7 data points were generated on each run using plasmids with 16S rRNA genes, and 564 



 

 

adding a plasmid concentration to achieve copy numbers in the range from 101 to 109 per reaction. Reaction 565 

mixtures with a final volume of 20 µL, comprised of10 µL 2 x Fast-Start SYBR green, 0.6 µL each forward and 566 

reverse primer (final concentration, 0.3 µM), 2 µL DNA template (equilibrated to 10 ng), and DIH2O to 20 µL. 567 

Themocycler conditions were 95°C for 5 minutes, followed by 30 cycles of 95°C for 15 seconds, 61.5°C for 15 568 

seconds, and 72°C for 20 seconds, and a final elongation step at 72°C for 5 minutes. Standards were made by 569 

cloning the E. coli 16S rRNA gene using the Thermofischer TOPO TA Cloning Kit. Plasmids were purified 570 

using the Qiagen QIAprep Spin Miniprep Kit. Purified plasmids were quantified by Qubit. Plasmid copy 571 

number was then calculated using the following formula: 572 

 573 

 574 

16S rRNA gene copy numbers per gram of feces were used to calculate daily copy numbers by multiplying by 575 

fecal weight and adjusting to PEG recovery.  576 

 577 

DNA and RNA sequencing. Fecal sample processing, nucleic acid extraction, library preparation, and 578 

sequencing were performed at the University of North Carolina at Chapel Hill Microbiome Core, which is 579 

supported by the following grants:  Gastrointestinal Biology and Disease (CGIBD P30 DK034987) and the 580 

UNC Nutrition Obesity Research Center (NORC P30 DK056350. DNA was extracted using the QIAamp Fast 581 

DNA Stool Mini Kit and library was prepared using the Swift 2 S Turbo DNA library kit. RNA was extracted 582 

using the Qiagen RNeasy PowerMicrobiome kit and library was prepared using QIAseq Stranded Total RNA 583 

Library kit. DNA and RNA were sequenced on the Illumina HiSeq 4000 PE 150 platform. Mean total reads 584 

were 18,339,758, with similar read depth on each diet (19,475,004 for the WD and 17,204,513 for the MBD). 585 

 586 

DNA Sequence Processing. DNA and RNA sequencing output was quality controlled with FastQC10. Adapters 587 

were trimmed using TrimGalore11. DNA sequences were aligned to Hg38 using bowtie212 and RNA sequences 588 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
�𝐷𝐷𝑁𝑁𝐷𝐷 �𝑛𝑛𝑛𝑛𝜇𝜇𝜇𝜇�� ∗ 6.022 ∗ 1023𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑁𝑁𝑛𝑛𝑛𝑛𝑙𝑙ℎ (𝑁𝑁𝐶𝐶) ∗  109 ∗ 660

 



 

 

were aligned to Hg38 using STAR13. DNA and RNA sequences were then analyzed for taxonomic composition 589 

with MetaPhlAn314, using standard parameters. 590 

 591 

Species Alpha- and Beta-Diversity. All calculations and analyses were conducted in R15. Taxonomic 592 

composition output from MetaPhlAn3 was processed for beta-diversity analysis using the “phyloseq” R 593 

package16. A rarefaction curve was created using the “vegan” R package17 to determine the optimal count-depth 594 

for rarefaction. Once the optimal count-depth was determined, rarefaction was performed using phyloseq. 595 

Alpha-diversity metrics were calculated using the “microbiome” R package18. After samples were rarified, each 596 

sample had 3,578,445 sequences. Bray-Curtis and Jaccard distance matrices were calculated on the rarefied 597 

count data using vegan. The distance matrices were tested for significance by PERMANOVA using vegan. 598 

Beta-dispersion was calculated, and the results tested for significance with the ANOVA-like permutation test 599 

and Tukey’s HSD in the vegan. Constrained Analysis of Principal Coordinates (CAP) ordination was performed 600 

with vegan. Statistical significance testing was performed with PERMANOVA in base R. Beta-diversity 601 

ordination figures were created using the “ggplot2” R package19. Differential abundance heatmap figures were 602 

created using the “ComplexHeatmap” R package20. 603 

 604 

Differential Abundance. Differential abundance testing by diet and host metabolizable energy was carried out 605 

using the output of MetaPhlAn3 in the “MaAsLin2” R package21. Taxonomic counts were filtered with a 25% 606 

prevalence cut-off. Compound Poisson multivariate linear models were used to account for zero-inflated data21.  607 

In the diet analysis the dependent variable was microbial abundance, the fixed variables were diet, period, and 608 

period sequence, and participant ID was a random factor. In the host metabolizable energy analysis, the 609 

dependent variable was microbial abundance, and the fixed independent variable was host metabolizable 610 

energy. 611 

 612 



 

 

Short-chain fatty acids. A targeted short chain fatty acid (SCFA) panel including acetate, propionate and 613 

butyrate was conducted for both fecal and serum SCFA (Metabolon, Inc., Mooresville, NC). For fecal SCFAs, 614 

the concentrations were adjusted for total feces produced and PEG recovery to calculate the total fecal SCFAs 615 

over the 6 inpatient calorimetry days. Acetate, butyrate, and propionate were summed to calculate total fecal 616 

SCFA and total serum SCFA. 617 

 618 

Appetite. Subjective ratings of appetite were determined using visual analog scales (VAS) administered at -30, 619 

-15, +30, +60, +120, and +180 min pre/post each meal. Breakfast was fixed at 500 kcals and lunch and dinner 620 

provided 1.5 X the energy content of their energy balanced diet consumed while in the whole room calorimeter, 621 

which is equivalent to 1.3X the energy needed in free-living conditions on our metabolic ward. Ad libitum 622 

intake was allowed at lunch and dinner for assessment of changes in food intake1. The trapezoidal rule was used 623 

to calculate the iAUC per meal and diet for each appetite scale22.  624 

 625 

Gut transit time. A radiotransmitter motility capsule was used to determine transit time and pH in the colon 626 

(SmartPill™; Medtronic, Minneapolis, MN)1,23.  627 

 628 

Gastric emptying. Gastric emptying was assessed via acetaminophen appearance after a test meal. 629 

Acetaminophen (1,500 mg) was administered at nominal timepoint zero1.  630 

 631 

Enteroendocrine hormones. Enteroendocrine hormones were evaluated after a test meal (Boost Plus or 632 

equivalent, 500 kcal) and lunch/dinner from their assigned diet at nominal timepoints -30, -15, + 30, +60, + 120, 633 

and +180 minutes pre/post each meal1.  GLP-1 (active), Leptin, and Pancreatic Polypeptide were measured with 634 

V-PLEX Metabolic Panel 1 Human Kit (MesoScale Diagnostics, Rockville, MD; Product # K15325D). For 635 

enteroendocrine hormones, the iAUC for the total time of measurement (~11 hours) was calculated by diet. The 636 

trapezoidal rule was used to calculate the iAUC24. 637 



 

 

 638 

Mathematical modeling. Previously, we developed a multicompartment transit, reaction, and absorption model 639 

with these 3 compartments: upper gastrointestinal tract, lower gastrointestinal tract, and the remaining human 640 

body. The code for the model can be found here: https://github.com/amarcus1/Metabolizable-and-digestible-641 

energy-calculator-for-patients-with-small-intestine-removed. The model estimates human dietary absorption for 642 

a general population and humans who had sections of small intestines and large intestines surgically removed. 643 

Specially, the model calculates the host harvest of carbohydrates, protein, and fat in the upper GI and microbe-644 

derived SCFAs in the lower GI25. For each participant, we had daily and cumulative values for grams of 645 

carbohydrates, proteins, fat, total fiber, and resistant starch consumed based on our designed menus. To use this 646 

information in our mathematical model, we systematically converted the measurements into gCOD/day of a) 647 

Available Sugar and Starch; CHO (g) - Resistant Starch (g) – fibers (g), b) Resistant Starch (RS), c) Non-Starch 648 

Polysaccharides (NSP), d) Proteins, and e) Fat.  These data were input into the model to calculate host 649 

metabolizable energy and compare it to our measured data. We then improved the model by using the measured 650 

colonic transit time and evaluated the impact of this change by comparing actual versus modeled data and 651 

calculating the coefficient of determination and concordance correlation coefficient. We evaluated systematic 652 

and proportional bias with a Bland-Altman plot26. We compared the absolute and proportional SCFA absorption 653 

with a paired two-tailed t-test.   654 

 655 

Statistical analyses. Descriptive statistics for continuous variables are presented as mean ± standard error of the 656 

mean if normally distributed or as median (interquartile range) if non-normally distributed; categorical variables 657 

are shown as counts and percentages.  658 

 659 

Appropriate to our randomized crossover design, we used a linear mixed model (SAS PROC MIXED) with diet, 660 

period, and sequence as fixed effects and participant as a random effect to compare differences by diet in our 661 

primary endpoint (host metabolizable energy: fecal energy loss adjusted to energy intake) and most other 662 

https://github.com/amarcus1/Metabolizable-and-digestible-energy-calculator-for-patients-with-small-intestine-removed
https://github.com/amarcus1/Metabolizable-and-digestible-energy-calculator-for-patients-with-small-intestine-removed


 

 

secondary and exploratory endpoints. When the distribution of the model residuals was found to deviate 663 

considerably from normality, a logarithmic transformation was applied. For each endpoint, we included only 664 

participants with complete data for both diet interventions when the data were considered to be missing not at 665 

random. Several values that were considered to be missing at random for the enteroendocrine hormone data 666 

(i.e., due to temporary issues with blood draw or laboratory analysis, but not because the entire sample was 667 

missing) were imputed by carrying the last observation forward or using the interpolation method (i.e., 668 

averaging the previous and subsequent values) 27. Statistical analyses were performed using SAS 9.4 and R.  669 

 670 

A p-value less than 0.05 was considered statistically significant. When using the false discovery rate (FDR)28 to 671 

correct for multiple comparisons for differential abundance analysis of gut microbial composition and 672 

associations of gut microbes with host metabolizable energy, an FDR q-value <0.05 was considered statistically 673 

significant. 674 

 675 

Data availability. The source data for the study’s primary endpoint can be found in FigShare: 676 

https://doi.org/10.6084/m9.figshare.21727889. All other data supporting the findings of this study are available 677 

from the corresponding author on reasonable request. 678 

 679 

Code availability. The code for the multicompartment transit, reaction, and absorption mathematical model is 680 

publicly available in a GitHub repository: https://github.com/amarcus1/Metabolizable-and-digestible-energy-681 

calculator-for-patients-with-small-intestine-removed  682 

  683 

https://doi.org/10.6084/m9.figshare.21727889
https://github.com/amarcus1/Metabolizable-and-digestible-energy-calculator-for-patients-with-small-intestine-removed
https://github.com/amarcus1/Metabolizable-and-digestible-energy-calculator-for-patients-with-small-intestine-removed
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Main figures with legends 766 

Fig. 1 767 

 768 
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Fig 1. The microbiome enhancer diet reduced host energy harvest. a, Daily energy lost by each participant 790 

in feces on the WD vs. MBD in grams COD/day (gCOD/day). b, Host metabolizable energy based on the 791 

proportion of fecal COD to dietary intake. c, Calculated host non-metabolizable energy (kcals). All data 792 

reported as are mean ± s.e.m. N=17 per diet for all panels. 793 

 794 

COD—Chemical Oxygen Demand; MBD—Microbiome Enhancer Diet; WD—Western Diet 795 
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Fig. 2 797 
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 834 

Fig 2. Diet reprogrammed the gut microbiome. a, Fecal bacterial biomass. b, Beta-diversity (Bray-Curtis 835 

Dissimilarity). c-d, Fecal and circulating short chain fatty acids. Data are presented as mean ± s.e.m for panels 836 

a-d. e, Heatmap shows the mean relative abundance of species whose relative abundance was significantly 837 

different by diet; bar plot shows the effect size of the regression coefficient from compound Poisson regression 838 

models comparing the relative abundance of each species by diet. Species shown in this figure were 839 

significantly different by diet (Q < 0.05), and the diet difference had an effect size ≥ 2. N=17 per diet for panels 840 

a-c and e; n=16 per diet for panel d. 841 

CAP—Canonical Analysis of Principal Coordinates; MBD—Microbiome Enhancer Diet; SCFA—short-chain 842 

fatty acids; WD—Western Diet  843 
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Fig. 3 844 
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Fig 3. Host response to diet-induced gut microbiota reprogramming. a-c, Weight, fat mass and lean mass 910 

changes on the WD vs. MBD; n=16 per diet. D, Energy expenditure (sleep metabolic rate extrapolated to 24-911 

hours); n=17 per diet. E-f, Colonic transit time and median colonic pH; n=17 per diet. G-I, An adipose-912 

pancreas-gut appetite-modulating axis shown by leptin, GLP-1, and pancreatic polypeptide iAUC (n=15 per 913 

diet). All data reported as mean ± s.e.m.  914 

 915 

GLP-1—Glucagon-Like Peptide 1; iAUC—Incremental Area Under the Curve; MBD—Microbiome Enhancer 916 

Diet; WD—Western Diet   917 
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 Fig. 4 918 
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 937 

Fig. 4. The contributions of the gut microbiome to host energy harvest. a, The heatmap shows the 938 

associations between host ME and the mean species RA. Each row is a microbial species and each column is an 939 

individual participant. The bar graph shows the effect size of the regression coefficient between the independent 940 

variable of host metabolizable energy and each species, from compound Poisson regression models. Figure 941 

shows all significant associations with Q < 0.05 and effect size ≤ 2. b, An in silico model comparison of 942 

modeled host ME vs. actual ME using the same fixed CTT (48 h) for all participants.  c, The same model with 943 

each participant’s measured CTT.  d, Box plot shows microbial energy harvest through SCFAs as grams COD 944 

per day (gCOD/d) for the WD and the MBD.  gCOD were calculated as the sum of acetate, propionate, n-945 

butyrate, and iso-butyrate absorbed. Data reported as median with error bars showing minimum and maximum 946 

values and box ends showing the 2nd and 3rd quartiles. Diamonds are outliers that fall outside 1.5X IQR. e, The 947 

percentage of COD absorbed as SCFAs adjusted for total energy intake (in gCOD/day). N=17 per diet for all 948 

panels. 949 

CCC—concordance correlation coefficient; COD—Chemical Oxygen Demand; CTT—Colonic Transit Time; 950 

Host ME—Host Metabolizable Energy; IQR—Interquartile Range; MBD—Microbiome Enhancer Diet; 951 

SCFA—short-chain fatty acids; RA—Relative Abundance; WD—Western Diet   952 
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Extended Data Tables 953 

Extended Data Table 1: Adverse Events 954 

Primary system organ class preferred 

term [n (%)] 

Western Diet Microbiome 

Enhancer Diet 

  (N=17 

participants) 

(N=17 participants) 

Any class 
  

   Participants: N (%) 6 (35.3%) 5 (29.4%) 

   Events: N 19 12    
Metabolism and nutrition disorders 

  

Hypoglycemia 
  

   Participants: N (%) 0 (0.0%) 1 (5.9%) 

   Events: N 0 1    
Nervous system disorders 

  

Headache 
  

   Participants: N (%) 3 (17.7%) 2 (11.8%) 

   Events: N 3 2 

Syncope 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0 

Neuralgia 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0    
Cardiac disorders 

  

Chest pressure 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0    
Eye disorders 

  

Dry eye 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0    
Respiratory, Thoracic and Mediastinal 

Disorders 

  

Rhinorrhea 
  

   Participants: N (%) 0 (0.0%) 2 (11.8%) 

   Events: N 0 2 

Cough 
  

   Participants: N (%) 1 (5.9%) 1 (5.9%) 

   Events: N 1 1 

Sore throat 
  

   Participants: N (%) 1 (5.9%) 1 (5.9%) 

   Events: N 1 1    
Gastrointestinal disorders 

  

Constipation 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0 



 

 

Nausea 
  

   Participants: N (%) 1 (5.9%) 1 (5.9%) 

   Events: N 1 1 

Vomiting 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0 

Abdominal pain 
  

   Participants: N (%) 2 (11.8%) 1 (5.9%) 

   Events: N 2 1 

Diarrhea 
  

   Participants: N (%) 2 (11.8%) 0 (0.0%) 

   Events: N 2 0 

Gastroesophageal reflux disease 
  

   Participants: N (%) 0 (0.0%) 1 (5.9%) 

   Events: N 0 1    
Skin and subcutaneous tissue disorders 

  

Rash 
  

   Participants: N (%) 2 (11.8%) 1 (5.9%) 

   Events: N 2 1    
Musculoskeletal and connective tissue 

disorders 

  

Pain in extremity 
  

   Participants: N (%) 1 (5.9%) 0 (0.0%) 

   Events: N 1 0    
General disorders and administration site 

conditions 

  

   Participants: N (%) 0 (0.0%) 1 (5.9%) 

   Events: N 0 1 

  955 



 

 

Extended Data Table 2: Dietary Intake Over 8 Inpatient Days  956 

Nutrient Target Western Diet Microbiome 

Enhancer Diet 

Energy Intake (kcal/8 days) Equivalence 17,008 ± 683 16,909 ± 700 

Carbohydrates (%) 47-52% 48 ± 0.02% 49% ± 0.06 % 

Fat (%) 32-37% 35 ± 0.01% 34 ± 0.04% 

Protein (%) 15-18% 16 ± 0.009% 17 ± 0.03% 

Fiber (g/1000 kcal) 6-10g/1000 kcal vs.  

23-30g/1000 kcal 

6.4 ± 0.02 26.0 ± 0.06 

Resistant Starch, Estimated 

(g/1000 kcal) 

<2g/1000 kcal vs.  

>8g/1000 kcals 

 

1.2 ± 0 10.3 ± 0 

 957 

Intake was evaluated by comparing the nutritional composition data from our menu design software to the 958 

amount of the provided diet consumed by each participant over the 8 inpatient days when all 3 meals were 959 

consumed on our metabolic ward and no modifications to the diets were made for enteroendocrine or food 960 

intake testing. As a comprehensive database of resistant starch content of foods does not exist, the contributions 961 

for resistant starch were estimated based on published amounts of resistant starch in the foods provided 962 

(reference needed). Data reported as mean ± s.e.m. 963 

  964 



 

 

 965 

Extended Data Table 3: Baseline Characteristics 966 

Total N 17 

Age (years) 30.8 ± 1.9 

BMI (kg/m2) 25.1 ± 0.52 

Female Sex:  8 (47.1) 

Race 

   Black  11 (64.7) 

   White 5 (29.4) 

   Unknown 1 (5.9) 

Hispanic/Latino Ethnicity   6 (35.3) 

Weight (kg) 70.5 ± 3.0 

Waist to Hip Ratio 0.83 ± 0.02 

Bristol Stool Scale 3.8 ± 0.10 

Bristol Stool Scale  

   Type 3  3 (17.65) 

   Type 4 14 (82.35) 

HbA1c (%) 5.0 ± 0.09 

TSH (u[IU]/mL) 1.7 ± 0.19 

AST (units/L) 25.3 ± 2.4 

ALT (units/L) 22.3 ± 3.4 

BUN (mg/dL) 11.7 ± 0.64 

Creatinine (mg/dL) 0.98 ± 0.06 

Continuous variables reported as mean ± s.e.m. Categorical variables reported as N (%). 967 

 968 

 969 

 970 

  971 



 

 

Extended Data Table 4: Differential Relative Abundance by Diet at the Phylum and Family Levels 972 

 973 

 P Value Q Value 

Phylum Level 

Firmicutes 0.041322 0.7438 

Actinobacteria 0.36716 0.921388 

Proteobacteria 0.591775 0.921388 

Bacteroidetes 0.79006 0.94554 

Verrucomicrobia 0.834099 0.94554 

Euryarchaeota 0.95604 0.968383 

Family Level 

Propionibacteriaceae 0.00766 0.402172 

Oscillospiraceae 0.004497 0.402172 

Actinomycetaceae 0.036966 0.880546 

Clostridiales_Family_XIII_Incertae_Sedis 0.092248 0.880546 

Acidaminococcaceae 0.051117 0.880546 

Bifidobacteriaceae 0.532114 0.969746 

Micrococcaceae 0.733506 0.969746 

Atopobiaceae 0.817563 0.969746 

Coriobacteriaceae 0.725051 0.969746 

Eggerthellaceae 0.368079 0.969746 

Bacteroidaceae 0.617749 0.969746 

Barnesiellaceae 0.679615 0.969746 

Odoribacteraceae 0.120954 0.969746 

Prevotellaceae 0.274396 0.969746 

Rikenellaceae 0.844536 0.969746 

Tannerellaceae 0.639694 0.969746 

Bacillales_unclassified 0.5078 0.969746 

Lactobacillaceae 0.327826 0.969746 

Leuconostocaceae 0.622826 0.969746 

Streptococcaceae 0.524649 0.969746 

Catabacteriaceae 0.278053 0.969746 

Christensenellaceae 0.643426 0.969746 

Clostridiaceae 0.669668 0.969746 

Clostridiales_unclassified 0.639535 0.969746 

Eubacteriaceae 0.539811 0.969746 

Lachnospiraceae 0.528458 0.969746 

Peptostreptococcaceae 0.647885 0.969746 

Ruminococcaceae 0.152769 0.969746 

Erysipelotrichaceae 0.415012 0.969746 

Firmicutes_unclassified 0.838296 0.969746 

Veillonellaceae 0.292069 0.969746 

Akkermansiaceae 0.83385 0.969746 

Desulfovibrionaceae 0.887671 0.972355 

Methanobacteriaceae 0.956145 0.984267 

Enterobacteriaceae 0.943787 0.984267 



 

 

Extended data figures with legends 974 
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Extended Data Fig. 1 976 
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Extended Data Fig. 1. Summary of results and study flow. a, Schematic of overall study design. b, Summary 1005 

of key microbiome and host factors that are collectively associated with host metabolizable energy in our study. 1006 

c, CONSORT diagram showing the flow of participants from enrollment through analysis.  1007 

  1008 
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Extended Data Fig. 2  1009 
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 1017 

 1018 

Extended Data Fig. 2. The experimental paradigm achieved adherence and energy balance. a, Energy 1019 

balance (mean of 6 measurement days) estimated from traditional parameters: Energy Balance = Energy Intake 1020 

(kcals/24h) – Energy Expenditure (kcals/24h). b, Dietary adherence on the WD compared to the MBD over all 1021 

inpatient days where all 3 meals were consumed on-site, and no changes were made to the feeding for testing. 1022 

All data reported as mean ± s.e.m. N=17 per diet for both panels. 1023 

MBD—Microbiome Enhancer Diet; WD—Western Diet. 1024 
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Extended Data Fig. 3 1028 
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Extended Data Fig. 3. Gut microbiome community structure and reprogramming. a, Fecal weight from 6 1076 

days of composited feces averaged to generate daily production. Data reported as mean ± s.e.m. b-c, Alpha-1077 

diversity measures of richness and evenness. d, Beta-diversity at the species level assessed with Jaccard 1078 

Similarity. e, Mean relative abundances and effect sizes of significantly differentially abundant species between 1079 

diets. The heatmap shows the mean relative abundance of significant species between each diet. The bar graph 1080 

shows the effect size of the regression coefficient for the comparison of species relative abundance by diet. 1081 

Species shown in this figure had P < 0.05 and Q < 0.25. f, Q-values for each regression coefficient shown in e, 1082 

which ranged from 5 x 10-10 to 0.217. The treatment indicates the diet on which the species relative abundance 1083 

was higher. N=17 per diet for all panels.  1084 

CAP—Canonical Analysis of Principal Coordinates; MBD—Microbiome Enhancer Diet; RA—relative 1085 

abundance; WD—Western Diet  1086 

Species Treatment Q-value 

Oscillibacter_sp_CAG_241 MBD 0.01 

Oscillibacter_sp_57_20 MBD 2.27 x 10-07 

Eubacterium_eligens MBD 7.44 x 10-07 

Prevotella_sp_CAG_279 MBD 0.0005 

Prevotella_copri MBD 1.46 x 10-06 

Lachnospira_pectinoschiza MBD 0.001 

Roseburia_hominis MBD 0.002 

Eubacterium_siraeum MBD 0.07 

Bacteroides_stercoris MBD 0.04 

Roseburia_faecis MBD 0.001 

Turicibacter_sanguinis MBD 0.02 

Bacteroides_caccae MBD 0.02 

Eubacterium_rectale MBD 0.02 

Ruminococcus_bromii MBD 0.15 

Parabacteroides_distasonis MBD 0.03 

Bacteroides_vulgatus MBD 0.04 

Ruminococcus_bicirculans MBD 0.12 

Hungatella_hathewayi MBD 0.21 

Odoribacter_splanchnicus MBD 0.16 

Coprococcus_eutactus MBD 0.14 

Bacteroides_thetaiotaomicron MBD 0.22 

Clostridium_bolteae MBD 5.00 x 10-10 

Akkermansia_muciniphila MBD 0.02 

Faecalibacterium_prausnitzii MBD 0.14 

Agathobaculum_butyriciproducens MBD 0.11 

Dorea_formicigenerans WD 0.10 

Blautia_obeum WD 0.14 

Eubacterium_hallii WD 0.14 

Asaccharobacter_celatus WD 5.04E x 10-06 

Anaerostipes_hadrus WD 4.37 x 10-05 

Roseburia_sp_CAG_471 WD 0.07 

Catenibacterium_mitsuokai WD 0.062 

Ruminococcus_torques WD 0.07 

Collinsella_aerofaciens WD 0.005 

Adlercreutzia_equolifaciens WD 5.68E-09 

Firmicutes_bacterium_CAG_145 WD 0.0003 

Holdemanella_biformis WD 0.005 

Coprococcus_comes WD 5.68 x 10-09 

Dorea_longicatena WD 1.26 x 10-05 

Collinsella_stercoris WD 0.02 

Slackia_isoflavoniconvertens WD 0.002 

Bifidobacterium_bifidum WD 0.018 

Enterorhabdus_caecimuris WD 5.34 x 10-06 

Bifidobacterium_longum WD 0.0003 

Clostridium_innocuum WD 0.07 

Clostridium_sp_CAG_58 WD 0.07 

Actinomyces_odontolyticus WD 0.009 

Clostridium_leptum WD 0.02 

Actinomyces_sp_HMSC035G02 WD 0.14 

Blautia_sp_CAG_257 WD 0.001 

Bifidobacterium_pseudocatenulatum WD 5.60 x 10-05 

Blautia_hydrogenotrophica WD 0.006 

Actinomyces_sp_ICM47 WD 0.02 

e 
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Extended Data Fig. 4. Host response to dietary intervention. a, Gastric emptying as evaluated by 1189 

acetaminophen appearance after a fixed breakfast. b, pH within a 1-hour window of the ileocecal passage. c-g, 1190 

Visual analog scale data for subjective ratings of fullness, hunger, prospective food consumption, satiety and a 1191 

composite appetite score. h, Ad libitum energy intake evaluated during lunch and dinner after a fixed breakfast. 1192 

All data reported as mean ± s.e.m. N=17 per diet for panels a and b; n=16 per diet for panels c-h. 1193 

MBD—Microbiome Enhancer Diet; WD—Western Diet. 1194 
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Extended Data Fig. 5 1196 
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Species Treatment Q-value 

Bifidobacterium_pseudocatenulatum MBD 0.09 

Coprococcus_eutactus MBD 0.03 

Turicibacter_sanguinis MBD 0.08 

Catenibacterium_mitsuokai MBD 0.1 

Dorea_formicigenerans MBD 0.2 

Eggerthella_lenta MBD 0.2 

Bacteroides_thetaiotaomicron MBD 0.2 

Roseburia_inulinivorans MBD 0.2 

Streptococcus_parasanguinis MBD 0.2 

Bacteroides_ovatus MBD 0.2 

Bacteroides_cellulosilyticus MBD 0.2 

Clostridium_sp_CAG_58 MBD 0.03 

Streptococcus_australis MBD 0.04 

Hungatella_hathewayi MBD 0.04 

Erysipelatoclostridium_ramosum MBD 0.03 

Clostridium_bolteae MBD 0.02 
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 1238 

Extended Data Fig. 5 Microbial contributions to host energy balance. a, The heatmap shows the 1239 

associations between host ME and mean RA of each species. Each row is a species and each column is an 1240 

individual participant.  The bar graph shows the effect size of the regression coefficient between the 1241 

independent variable of host metabolizable energy and each species, from compound Poisson regression models 1242 

(Q < 0.25) b, Q-values for the regression coefficients shown in a, for each species (range 0.023 - 0.198). c, 1243 

Bland-Altman plot comparing actual metabolizable energy (absorbed COD) measured for each participant with 1244 

the model prediction with fixed CTT of 48 h for each participant. d, Bland-Altman plot comparing actual 1245 

metabolizable energy (absorbed COD) measured for each participant with the model prediction with measured 1246 

CTT for each participant. N=17 per diet for all panels.  1247 

COD—chemical oxygen demand; ME—metabolizable energy; RA—relative abundance. 1248 
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